# how do you solve cscx+ 2=0 on the interval (0,2pi)

### 1 Answer | Add Yours

`cscx +2 = 0`

`cscx = -2`

`1/sinx = -2`

`sinx = -1/2`

`sinx = -1/2`

`sinx = -sin(pi/6)`

`sinx = sin(-pi/6)`

The common solution for sines is` x = npi+(-1)^nalpha`

`sinx = sin(-pi/6)`

`x = npi+(-1)^n(-pi/6) ` where `n in Z`

n x

0 ` -pi/6`

1 `7pi/6 `

2 `11pi/6 `

3 `19pi/6`

*So the answers in the interval `(0,2pi) ` will be;*

`x = (7pi)/6 `

`x = (11pi)/6 `