# How do I solve the following 144x^4-169y^6 -5t^2-11t+12 y(y-2)-6(2-y)

### 3 Answers | Add Yours

`y(y-2)-6(2-y)=y(y-2)+6(y-2)= (y+6)(y-2)`

`144x^4-169v^6=(12x^2+13x^3)(12x^2-13y^3)`

`-5t^2-11t+12`

`Delta=361>0` has two different real solutions:

`x= (11+-sqrt(361))/(-10)` `t_1=-3` `t_2=4/5`

`5t^2-11t+12=(t+3)(4-5t)`

Part 1,

`144x^4-169y^6`

`=(12x^2)^2-(13y^3)^2`

`=(12x^2+13y^3)(12x^2-13y^3)`

Part 2:

`-5t^2-11t+12`

`=-(5t^2+11t-12)`

`=-(5t^2+15t-4t-12)`

`=-{5t(t+3)-4(t+3)}`

`=(t+3)(4-5t)`

Part 3,

y(y-2)-6(2-y)

=y(y-2)+6(y-2)

**=(y-2)(y+6)**