# How do I solve `4 ^(9x-3) = 50` ?

### 1 Answer | Add Yours

`4^(9x-3)=50`

To solve for x, take the logarithm of both sides.

`ln 4^(9x-3)=ln50`

At the left side of the equation, apply the property` ln a^m=mlna` .

`(9x-3)ln4=ln50`

Next,divide both sides by ln4.

`((9x-3)ln4)/(ln4)=(ln50)/(ln4)`

`9x-3=(ln50)/(ln4)`

Then, add both sides by 3.

`9x-3+3=(ln50)/(ln4)+3`

`9x=(ln50)/(ln4)+3`

`And, divide both sides by 9.`

`(9x)/9=((ln50)/(ln4)+3)/9`

`x=(ln50)/(9ln4)+3/9`

`x=(ln50)/(9ln4)+1/3`

`x=0.6469`

**Hence, the solution to the exponential equation is `x=0.6469` .**