how do I prove sinx-siny=2 sin(1/2)(x-y)cos(1/2)(x+y)

### 1 Answer | Add Yours

The identity `sinx-siny=2* sin((x - y)/2)*cos((x+y)/2)` has to be proved.

`sin x - sin y`

= `sin ((x + y + x - y)/2) - sin ((x + y - x + y)/2)`

= `sin ((x + y)/2 + (x - y)/2)` - `sin ((x + y)/2 - (x - y)/2)`

= `sin ((x + y)/2)*cos((x - y)/2)` + `cos((x + y)/2)*sin((x - y)/2)` - `sin ((x + y)/2)*cos((x - y)/2)` + `cos((x + y)/2)*sin((x - y)/2))`

= `2*cos((x + y)/2)*sin((x - y)/2)`

**This proves that `sinx-siny=2* sin((x - y)/2)*cos((x+y)/2)` **

### Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes