Given f(x)=x^2*e^x, calculate f'(x)? Topic: Math 1 Answer | Add Yours justaguide | College Teacher | (Level 2) Distinguished Educator Posted on August 28, 2013 at 2:29 PM The function `f(x) = x^2*e^x` `f'(x) = (x^2)'*(e^x) + *x^2)*(e^x)'` = `2x*e^x + x^2*e^x` = `x*e^x(2 + x)` The derivative `f'(x) = x*e^x(2 + x)` The function `f(x) = x^2*e^x` `f'(x) = (x^2)'*(e^x) + *x^2)*(e^x)'` = `2x*e^x + x^2*e^x` = `x*e^x(2 + x)` The derivative `f'(x) = x*e^x(2 + x)` We’ve answered 301,096 questions. We can answer yours, too. Ask a question

justaguide | College Teacher | (Level 2) Distinguished Educator Posted on August 28, 2013 at 2:29 PM The function `f(x) = x^2*e^x` `f'(x) = (x^2)'*(e^x) + *x^2)*(e^x)'` = `2x*e^x + x^2*e^x` = `x*e^x(2 + x)` The derivative `f'(x) = x*e^x(2 + x)` The function `f(x) = x^2*e^x` `f'(x) = (x^2)'*(e^x) + *x^2)*(e^x)'` = `2x*e^x + x^2*e^x` = `x*e^x(2 + x)` The derivative `f'(x) = x*e^x(2 + x)`