# Given 2vectorOA+3vector OB=vectorOC, what is point C? A(-2,3)B(4,2)

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You should remember how to write the vector when the problem provides the coordinates of the initial point and terminal point of vector such that:

`bar(OA) = (x_A - x_O)*bar i + (y_A - y_O)*bar j`

`bar(OA) = (-2- 0)*bar i + (3 - 0)*bar j`

`bar(OA) = -2bar i + 3bar j`

Multiplying `bar(OA) ` by 2 yields:

`2bar(OA) = 2(-2bar i + 3bar j) `

`2bar(OA) = -4bar i + 6bar j`

`bar(OB) = (x_B - x_O)*bar i + (y_B - y_O)*bar j `

`bar(OB) = (4-0)*bar i + (2-0)*bar j`

`bar(OB) = 4bar i + 2bar j`

Multiplying `bar(OB)`  by 3 yields:

`3bar(OB) = 3(4bar i + 2bar j) `

`3bar(OB) = 12bar i + 6bar j`

`2bar(OA)+ 3bar(OB) =-4bar i + 6bar j + 12bar i + 6bar j` Collecting like terms yields:

`2bar(OA) + 3bar(OB) = 8bar i + 12bar j`

The problem provides the information that `2bar(OA) + 3bar(OB) = bar(OC)`  such that:

`bar(OC) = 8bar i + 12bar j`

`bar(OC) = (x_C - x_O)*bar i + (y_C - y_O)*bar j`

`bar(OC) = x_C *bar i + y_C*bar j`

Comparing `bar(OC) = x_C *bar i + y_C*bar j`  to `bar(OC) = 8bar i + 12bar j`  yields `x_C = 8`  and `y_C = 12`

Hence, evaluating the coordinate of the point C yields C(8,12).

Sources: