A fur dealer find that when coats sell for $3200, monthly sales are 70 coats, when the price increases to $3500 the demand is for 20 coats. Assume that the demand equation is linear. If overhead...

A fur dealer find that when coats sell for $3200, monthly sales are 70 coats, when the price increases to $3500 the demand is for 20 coats. Assume that the demand equation is linear.

If overhead is $2000 per month and the production cost per coat is $500, find the cost equation and the profit equation.

the cost equation is C(x)=

and the profti equation P(x)=

(be sure the equation are simplified)

find the level of production that maximizes profit

the level of production is=

Asked on

1 Answer | Add Yours

crmhaske's profile pic

Posted on

The cost equation will be equal to the overhead plus the production cost, which is equation to 500 multiplied by the number of coats sold (x):

C(x)=2000 + 500x

The profit equation will be equal to the price of the coats multiplied by the number of costs sold minus the cost equation:

P(x)=px-(2000+500x)

Next we must find the demand equation, p.  We know that it is a linear function therefore:

`p=mx+b`

First we solve for the slope, m:

`m=(p_2-p_1)/(x_2-x_1)=(3500-3200)/(20-70)=-6`

Next we solve fot the y-intercept, b:

`3500=-6(20)+b -gt b=3500+120=3620`

Therefore the price per coat (p) as a function of the number coats sold is (x):

p=-6x+3620

Substituting this into the profit equation above we find that:

`P(x)=(-6x+3620)x-(2000+500x)`

`=-6x^2+3620x-2000-500x`

`=-6x^2+3120x-2000`

In order to determine the level of production that maximizes profit we must find the value of x for which the derivative of the profit function is 0:

`P'(x)=-12x+3120=0`

`12x=3120`

`x=260`

Therefore, if 260 coats are produced than profit is maximized.

Sources:

We’ve answered 324,324 questions. We can answer yours, too.

Ask a question