# Find the integral `int cot^2 y dy`

### 1 Answer | Add Yours

The integral `int cot^2 y dy` has to be determined.

`int cot^2 y dy`

= `int (cos^2 y)/(sin^2 y) dy`

= `int (1 - sin^2 y)/(sin^2 y) dy`

= `int 1/(sin^2 y) - 1 dy`

= `int cosec^2 y - 1 dy`

= `int cosec^2 y dy - int 1 dy`

= `-cot y - y + C`

**The required integral is `-cot y - y + C` **