# Find the indefinite integral `inte^(x^5) x^4 dx` U=x^5

### 1 Answer | Add Yours

`U = x^5`

`(dU)/(dx) = 5x^4`

`dU/5 = x^4dx`

`inte^(x^5)x^4dx`

`= inte^UdU/5`

`= 1/5inte^UdU`

`= 1/5e^U+C` where C is a constant.

`= 1/5e^(x^5)+C`

*So the answer is;*

`inte^(x^5)x^4dx= 1/5e^(x^5)+C`

**Sources:**