find the indefinite integral of h(u) = sin^2 (8u)

2 Answers | Add Yours

sciencesolve's profile pic

Posted on

You need to come up with the following substitution, such that:

`8u = v => (8u)' = v' => 8du = dv => du = (dv)/8`

Changing the vaiable, yields:

`int sin^2 (8u) du = int sin^2 v (dv)/8`

You need to use the half angle identity, such that:

`sin^2 v = (1 - cos 2v)/2`

`int sin^2 v*(dv)/8 = int (1 - cos 2v)/2*(dv)/8`

You need to use the property of linearity of indefinite integral, such that:

`int (1 - cos 2v)/16*(dv) = int (1/16)dv - int (cos 2v)/16 dv`

`int (1 - cos 2v)/16*(dv) = (1/16) v - (sin 2v)/32 + c`

Replacing back `8u` for `v` yields:

`intsin^2 (8u) du = (1/16) *(8u) - (sin 16u)/32 + c`

`intsin^2 (8u) du = u/2 - (sin 16u)/32 + c`

Hence, evaluating the indefinite integral, using substitution and half angle trigonometric identity, yields `intsin^2 (8u) du = u/2 - (sin 16u)/32 + c.`

pramodpandey's profile pic

Posted on









We’ve answered 331,110 questions. We can answer yours, too.

Ask a question