# Find the first and second derivatives of S(x)=2x^3-18x^2+48x+220 and then create a sign diagram for both? I'm having trouble with factoring the first derivative

### 1 Answer | Add Yours

Given `S(x)=2x^3-18x^2+48x+220`

(a) `S'(x)=6x^2-36x+48`

`S'(x)=0 ==> 6(x^2-6x+8)=0` Factor out the greatest common factor

`6(x-4)(x-2)=0`

** Find p,q such that pq=8 and p+q=-6. Then p=-4 and q=-2 (or vice versa.) Or write `6(x^2-4x-2x+8)=6[x(x-4)-2(x-4)]=6(x-4)(x-2)=0`

Now 6(x-4)(x-2)=0 ==> x=4 or x=2.

x<2 x=2 2<x<4 x=4 x>4

---------------------------------------------------------------

S'(x) pos 0 neg 0 pos

Convenient test values are x=0,x=2,x=3,x=4,x=5: when x=0 you have 6(-4)(-2)>0 etc... If `S'(x)>0` the function is increasing.

(2) `S'(x)=6x^2-36x+48`

`S''(x)=12x-36`

S''(x)=0 ==> 12x-36=0 ==> x=3

x<3 x=3 x>3

------------------------------------------------------

S''(x) neg 0 pos