Homework Help

  Find the area of the region `R` that lies under `y=11/sqrt(25-2x)` , over `-48 <...

user profile pic

maheen100 | Student, Undergraduate | (Level 1) Honors

Posted February 24, 2013 at 6:23 PM via web

dislike 1 like

 

Find the area of the region `R` that lies under `y=11/sqrt(25-2x)` , over `-48 < x < 0`. 

1 Answer | Add Yours

user profile pic

tiburtius | High School Teacher | (Level 3) Associate Educator

Posted February 24, 2013 at 7:40 PM (Answer #1)

dislike 1 like

To find area under a curve you need to find definite integral of your function `y` over a given region `-48<x<0`.

`int_-48^0 11/(sqrt(25-2x))dx=|(t=25-2x),(dt=-2dx =>dx=-1/2dt),(t_1=25-2(-48)=121),(t_2=25-2cdot0=25)|=`

Above we use substitution `t=25-2x`, `t_1` and `t_2` are new limits of integration for variable `t`. In the following line we will use the fact that `int dx/sqrt x=2sqrt x`.

`-11/2 int_121^25 dt/sqrt(t)=-11/2cdot 2 sqrt(t)|_121^25=-11(sqrt(25)-sqrt(121))=-11(5-11)=66`

So the area of region `R` is 66.

 

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes