Find the absolute maximum and minimum values of `f(x)=2x^3-3x^2-12x` on interval [-2,3].

1 Answer | Add Yours

lemjay's profile pic

lemjay | High School Teacher | (Level 2) Senior Educator

Posted on


To start, take the derivative of f(x).


Then, set f'(x) equal to zero.


To simplify, divide both sides by 6.


Then, factor.


Set each factor to zero and solve for x.

`x-2=0`                   and                      `x+1=0`

    `x=2`                                                    `x=-1`

Substitute values of f(x) to determine y.

`x=-1 ` ,        `y=2x^3-3x^2-12x=2(-1)^3-3(-1)^2-12(-1)=7`

`x=2`  ,          `y=2x^3-3x^2-12x=2(2)^3-3(2)^2-12(2)=-20`

Note that the value of y when x=-1 is greater than the value of when x=2.

Hence, at interval [-2,3], the absolute maximum is the point (-1,7) and the absolute minimum is (2,-20).

We’ve answered 317,870 questions. We can answer yours, too.

Ask a question