f(x) = x^3 + 6x^2 + 3x - 20   (x + 4) is a factor Use synthetic division and solve the resulting quadratic quotient to find all zeros.

1 Answer | Add Yours

llltkl's profile pic

llltkl | College Teacher | (Level 3) Valedictorian

Posted on

Given: (x+4) is a factor of the given polynomial `x^3 + 6x^2 + 3x - 20.` Then -4 is a root.

Using synthetic division:

-4 |   1     +6      +3      -20

                -4       -8      -20

      -------------------------

         1      2        -5        0

The resulting quotient is `x^2+2x-5` . Since, this is a quadratic function its roots are:

`(-2+-sqrt(2^2-4*1*-5))/(2*1)`

`=(-2+-sqrt24)/2`

`=-1+-sqrt6`

Therefore, the zeroes of f(x) are `-4,-1-sqrt6, -1+sqrt6.`

The graph:

 

Sources:

We’ve answered 315,532 questions. We can answer yours, too.

Ask a question