# find the derivative of f(x)=(x-2*lnx)^4

### 2 Answers | Add Yours

The function `f(x)=(x-2*lnx)^4` . The derivative f'(x) is determined using the chain rule.

`f'(x) = 4*(x - 2*ln x)^3*(1 - 2/x)`

**The required derivative of `f(x)=(x-2*lnx)^4` is **`f'(x) = 4*(x - 2*ln x)^3*(1 - 2/x)`

[ 4(x-2lnx)^3 ] * [ (1-(2/x)) ]

Use chain rule.