Evaluate the limit which exist:lim x-> 1-   (x^3 -1)/ (|x^3 - 1|)

Asked on by stevesam93

1 Answer |Add Yours

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted on

You should substitute 1 for x in the equation under limit such that:

`lim_(x->1) (x^3-1)/|x^3-1| = (1-1)/|1-1| = 0/0`

You need to evaluate the side limits such that:

`lim_(x->1, x<1) (x^3-1)/|x^3-1| = lim_(x->1, x<1) (x^3-1)/(1 - x^3) = 0/0`

Since evaluating the limit yields an indetermination, you may use l'Hospital's theorem such that:

`lim_(x->1,x<1) (x^3-1)/(1 - x^3) = lim_(x->1) ((x^3-1)')/((1 - x^3)')`

`lim_(x->1) (x^3-1)/(1 - x^3) = lim_(x->1) (3x^2)/(-3x^2)`

Reducing like terms yields

`lim_(x->1) (x^3-1)/(1 - x^3) = -1`

`lim_(x->1, x>1) (x^3-1)/|x^3-1| = lim_(x->1, x>1) (x^3-1)/(x^3-1) = 0/0`

`lim_(x->1, x>1) (x^3-1)/(x^3-1) = lim_(x->1,x>1) ((x^3 - 1)')/((x^3 - 1)')`

`lim_(x->1, x>1) (x^3-1)/(x^3-1) = lim_(x->1,x>1) (3x^2)/(3x^2)`

`lim_(x->1, x>1) (x^3-1)/(x^3-1) = 1`

Conclusion: `lim_(x->1, x>1) = 1 != -1 lim_(x->1, x<1)`

Hence, evaluating side limits yields that they do not have equal values, thus, that there is no ordinary limit for the given function, under the given condition.

We’ve answered 317,843 questions. We can answer yours, too.