Evaluate the definite integral `int_(1)^8 (x + x^2)/(x^4) dx` .

### 2 Answers | Add Yours

The definite integral `int_(1)^8 (x + x^2)/(x^4) dx`

=> `int_(1)^8 1/x^3 + 1/x^2 dx`

=> `|-1/(2*x^2) - 1/x|_(1)^8`

=> `(-1/2)(1/64 - 1) - (1/8 - 1)`

=> `63/128 + 7/8`

=> `175/128`

**The definite integral **`int_(1)^8 (x + x^2)/(x^4) dx = 175/128`

Evaluate `int_1^8(x+x^2)/x^4 dx` :

Rewrite as `int_1^8[x/x^4+x^2/x^4]dx` The integral of a sum is the sum of the integrals:

`=int_1^8x^(-3)dx + int_1^8x^(-2)dx`

`=-1/2x^(-2)|_1^8+(-1)x^(-1)|_1^8`

`=-1/2(1/64-1)-(1/8-1)`

`=175/128~~1.367`

The graph:

-----------------------------------------------------------------

**The integral evaluates as 175/128**

-----------------------------------------------------------------

### Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes