Homework Help

Evaluate: (1 - tan 10°)/(1 + tan 10°)

user profile pic

nasirjam | Student, Grade 9 | Honors

Posted December 13, 2012 at 10:14 AM via web

dislike 1 like

Evaluate: (1 - tan 10°)/(1 + tan 10°)

3 Answers | Add Yours

user profile pic

sciencesolve | Teacher | (Level 3) Educator Emeritus

Posted December 13, 2012 at 11:21 AM (Answer #1)

dislike 1 like

You should substitute `tan 45^o`  for 1 such that:

`(1 - tan 10^o)/(1 + tan 10^o) = (tan 45^o - tan 10^o)/(tan 45^o + tan 10^o)`

You need to convert the difference and the sum into a product, such that:

`tan 45^o - tan 10^o = (sin(45^o - 10^o))/(cos 45^o cos 10^o)`

`tan 45^o+ tan 10^o = (sin(45^o + 10^o))/(cos 45^o cos 10^o)`

`(1 - tan 10^o)/(1 + tan 10^o) = ((sin(45^o - 10^o))/(cos 45^o cos 10^o))/((sin(45^o + 10^o))/(cos 45^o cos 10^o))`

Reducing duplicate factors yields:

`(1 - tan 10^o)/(1 + tan 10^o) = (sin(45^o - 10^o))/(sin(45^o + 10^o))`

`(1 - tan 10^o)/(1 + tan 10^o) = (sin35^o)/(sin55^o)=0.573/0.819 ~~ 0.7`

Hence, evaluating the given expression yields `(1 - tan 10^o)/(1 + tan 10^o) = (sin35^o)/(sin55^o) ~~ 0.7.`

user profile pic

lfryerda | High School Teacher | (Level 2) Educator

Posted December 15, 2012 at 7:49 PM (Answer #2)

dislike 1 like

Another way of evaluating this expression is using the subtraction formula for tangent.  This is:

`tan(a-b)={tan a-tan b}/{1+tan a tan b}`

now let `a=45` and `b=10` , so `tan a=tan45=1` .  This means that the expression becomes:

`{1-tan10}/{1+tan10}`

`=tan(45-10)`

`=tan35`

`approx 0.700208`

This means that the expression is `tan35 approx 0.700208` .

user profile pic

vaaruni | High School Teacher | Salutatorian

Posted January 4, 2013 at 6:45 AM (Answer #3)

dislike 0 like
(1-tan10̊)/(1+tan10̊)=(1-0.1763)/(1+0.1763)=(0.8237)/(1.1763) = 0.70023 Hence, (1-tan10̊)/(1+tan10̊)= 0.700208 <-- Answer

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes