Calculate the limit of the sequence: [ln(n+1)/(ln n)]n∈N



1 Answer | Add Yours

degeneratecircle's profile pic

Posted on (Answer #1)

If we let `g(x)=ln(x+1)` and `h(x)=ln x,` we can find the limit of the function `f(x)=(ln(x+1))/ln x=(g(x))/(h(x))` as `x->oo` using L'Hopital's rule, and the limit of the corresponding sequence will of course be the same. The numerator and denominator both approach `oo` as `x` does, so `f` is indeed a candidate to try L'Hopital. Since

`g'(x)=1/(x+1)` and `f'(x)=1/x,` we get


The limit is `1.`


We’ve answered 396,827 questions. We can answer yours, too.

Ask a question