Homework Help

  If  a^(x+3) = b^(-1), then x =

alejandrogalarce's profile pic

Posted via web

dislike 2 like


If  a^(x+3) = b^(-1), then x =

3 Answers | Add Yours

Wilson2014's profile pic

Posted (Answer #3)

dislike 1 like


We want to isolate x, but there is no simple step to do that just yet since it is in the exponent form. So we must first take the log of both sides and apply the property: `log a^x = xloga`


`=> log a^(X+3) = log b^(-1)` 

`=> (x+3)loga = -1logb`

Then we can employ simple algebra to isolate x.

`=> x+3 = -logb/loga`

`=> x = (-logb/loga)-3` 

mariloucortez's profile pic

Posted (Answer #4)

dislike 1 like

To solve for this, you simplify first the right side by applying this property of negative exponent:

`n^(-1) = 1/n`

`` Rewritng the problem, you have:

`a^(x+3) = 1/b`

Take the logarithm of both.

`loga^(x+3) = log(1/b)` 

Apply `logM^n = nlogM` on the left side and `log(M/N) = logM - logN` on the right side.

`(x+3)loga = log1 - logb` 

recall that log 1 = 0.

`(x+3) log a = 0 - logb`

 The, divide both sides by log a so you can isolate the terms with x on one side.

`(x+3)*loga/(loga) = -logb/(loga)`

 `x+3 = -logb/(loga)`

 Subtract 3 on both sides so x can be isolated on the left side.

`x+3-3 = -logb/(loga) - 3`

Therefore,  `x = -logb/(loga) - 3`


rakesh05's profile pic

Posted (Answer #5)

dislike 1 like

When a>0 and b>0




or,  `x=-3-logb/loga`

When a<0 the problem has no slution at all.

when a=0 and b=0 , the problem has no slution. Therefore the only possibility to solve the above equation is that a>0 and b>0.

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes