Homework Help

ABC is an equilateral tiangle.P is any point on the arc BC.Prove AP=BP+PC...

user profile pic

topperoo | Student, Grade 10 | (Level 1) Salutatorian

Posted September 11, 2012 at 4:24 AM via web

dislike 1 like

ABC is an equilateral tiangle.P is any point on the arc BC.Prove AP=BP+PC

http://www.flickr.com/photos/78780315@N06/7963176188/in/photostream

2 Answers | Add Yours

Top Answer

user profile pic

lfryerda | High School Teacher | (Level 2) Educator

Posted September 18, 2012 at 1:57 AM (Answer #1)

dislike 1 like

Since the points ABPC lie on a common circle, then the quadrilateral is cyclic (see link below).  Cyclic quadrilaterals obey Ptolemy's theorem, so we have :

`AP cdot BC= AC cdot BP+PC cdot AB`

but since triangle ABC is equilateral, each side is the same.  Let 

`x=AB=AC=BC`

then Ptolemy's Theorem becomes

`AP cdot x=x cdot BP+PC cdot x`   divide both sides by x to get

`AP=BP+PC`

The theorem has been proven.

Sources:

user profile pic

topperoo | Student, Grade 10 | (Level 1) Salutatorian

Posted September 11, 2012 at 4:25 AM (Answer #2)

dislike 0 like
the link is this http://www.flickr.com/photos/78780315@N06/7963176188/in/ photostream

Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes