`(3^9)-(3^8)=2/3^x`

Solve the equation

### 1 Answer | Add Yours

Factor out the 3^8 on left side.

`3^(8)(3^1 - 1) = 2/(3^x)`

`3^(8)(2) = 2/(3^x)`

Divide both sides by 2.

`(3^(8)(2))/(2) = (2/(3^x))/(2)`

Cancelling the 2's on top and bottom on both sides.

`3^8 = 1/3^x`

Take note that 1/a^m = a^-m.

So, we will have:

`3^(8) = 3^(-x)`

Since, the bases are the same we can just write it as:

8 = -x.

or -x = 8.

Multiply both sides by -1.

The answer will be**, x = -8 **

### Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes