1) Which statement is true about the graph?

a) It has a horizontal asymptote of y = -4

b) It has a vertical asymptote of x = -2

c) Both a) and b)

d) None of the above

### 1 Answer | Add Yours

An asymptote is a line that the graph approaches, but never meets.

From the graph, we can see that there is a vertical line that the graph approaches at x=-2 but there is no horizontal line that the graph approaches. The graph is continuing to rise above the horizontal axis on the right side.

This means that the graph has a vertical asymptote at x=-2 and no horizontal asymptote. **Therefore the statement that is true about the graph is part (b).**

### 1 Reply | Hide Replies ▲

The definition of an asymptote is a line that the graph approaches as x grows without bound. There is no reason that the function cannot touch the asymptote. For rational functions this is true, but consider `y=1/x sinx+3` . This function approaches the line y=3 while crossing it an infinite number of times.

I realize that the true definition requires limits, but we must be careful to define the terms accurately, if not precisely.

### Join to answer this question

Join a community of thousands of dedicated teachers and students.

Join eNotes